본문 바로가기

Messages from Bahn

(1184)
월간 정부환 (2017.01/02호) 이젠 월간 정부환이 아니라 격월간 정부환으로 바꿔야할 듯합니다. 작년까지는 매주 토/일 이틀동안 사진을 찍으면서 돌아다녔는데, 올해에는 하루는 사진을 찍고 하루는 논문이나 자료 등을 보며 공부하면서 보내고 있습니다. 물론 겨울이다보니 추워서 밖에 잘 나가지 않은 것도 있고, 겨울에 돌아다닐만한 곳이 마땅치 않은 점도 있습니다. 그러다보니 한달에 4~5장의 사진만 공유하곤 합니다. 그래서 올해는 두달치를 모아서 글을 적으려 합니다. === Also in...B: https://brunch.co.kr/@jejugrapher M: https://medium.com/jeju-photography F: https://www.facebook.com/unexperienced
딥 개인화에서 해결해야할 문제들... 지난 글에서 워드임베딩에 대한 생각을 정리하고 딥러닝과 결합해서 개인화 추천에 어떻게 적용할 것인가에 대한 간단한 스케치를 올렸습니다. (참고. 워드임베딩: http://bahnsville.tistory.com/1139, 개인화 추천: http://bahnsville.tistory.com/1141) 오늘은 그런 기술을 딥 개인화 시스템에 적용할 때 예상되는 문제점들에 대해서 생각나는대로 정리하려 합니다. 지난 글에 제시한 딥 개인화 아키텍쳐를 간단히 설명하면 다음과 같습니다. 텍스트, 이미지, 또는 웹로그 등의 유저 및 아이템 정보/이력에 포함된 개별 항목들을 워드임베딩 기술로 벡터화한다. 유저/아이템의 정보를 RNN이나 CNN 등으로 정형화된 벡터로 압축한다.정형화된 유저벡터와 아이템벡터의 관계를 유저..
딥 개인화 Deep Personalization 워드임베딩과 팩토라제이션을 설명한 지난 글에서 http://bahnsville.tistory.com/1139 저는 그 기술들을 크고 다양한 데이터 기반의 개인화 추천 data-rich personalization에 적용하는 것에 관심있다고 밝혔습니다. 이번에는 어떻게 개인화 추천에 활용할 수 있을 것인가?에 대해서 아이디어 차원의 글을 적습니다. 좀 naive할 수도 있음을 미리 밝힙니다. 불가능한 것은 아니지만 word2vec같은 워드임베딩 기술이나 SVD, NMF같은 팩토라이제이션 기술을 바로 개인화 추천에 이용하는 데는 한계가 있습니다. 유저별로 조회했던 아이템을 시간순으로 나열하고, 아이템을 word/vocabulary로 가정해서 아이템의 벡터를 만들 수 있습니다. 아이템 벡터의 cosine 유사..
Regularization: 복잡도를 다스리는 법 개인적으로 전문용어가 어색하게 한글화되는 것을 별로 좋아하지 않는데, regularization도 그런 경우에 속합니다. 적당한 한글 용어를 찾기가 어렵습니다. 인터넷에 검색해보면 '규제화'라고 번역한 경우를 봤는데 페널티로 모델 복잡도를 제어하는 방식에는 유효하지만 다른 방식에는 조금 어색한 표현입니다. '일반화'는 그냥 generalization를 번역한 것 같지만 또 한편으론 학습오류와 테스트오류를 합친 generalization error를 줄인다는 의미처럼 보여서 나름 합당한 면이 있습니다. '정규화'라고 번역한 경우도 있는데 개발자들이 많이 사용하는 regular expression을 정규식이라고 부르니 정규화도 타당한 번역이지만 데이터를 정규 분포를 따르도록 만드는 normalization,..
워드 임베딩과 팩토라이제이션, 그리고 개인화 Word Embedding, Factorization, and Personalization 여러 가지 개념이 혼재돼있습니다. 단어의 원래 뜻과 다르게 해석한 여지가 있습니다. 이 글에서 설명한 것이 절대적으로 맞다고 생각하면 위험합니다. 저는 제게 필요한 것으로 아전인수격으로 정의, 사용했을 개연성이 높음을 미리 경고합니다. 한글화된 용어를 별로 좋아하지 않지만 필요에 따라서 (국내에서 통상적으로 사용하는 경우) 일부 용어는 한글화했습니다. 2017년은 나름 공부하는 해로 정하고 그동안 미뤄놨던 논문들을 읽기 시작했습니다. 벌써 4주차가 됐는데도 여전히 논문을 읽고 있으니 지금의 흐름은 나름 오래 갈 것 같습니다. 한동안은 업무에 필요하거나 주목받은 논문 한두편을 짧게 읽은 적은 있지만, 연구실에 있을 ..
2016년 신용카드 사용 실태 점검 또 다시 돌아온 연말정산 시즌입니다. 지난 1년동안 사용했던 카드 내역을 점검했습니다. - 2015 http://bahnsville.tistory.com/1100 - 2014 http://bahnsville.tistory.com/1056 - 2013 http://bahnsville.tistory.com/944 총 사용 기간은 2015년 12월 16일부터 2016년 12월 15일까지입니다. 카드회사에서 제공하는 월별 결제내역을 기준으로 데이터를 뽑았습니다. 작년까지는 사용처의 종류를 '기타' 포함 총 12개로 했었는데, 올해는 '공과금' '교통' '레저' 항목을 추가했습니다. 공과금은 카카오페이를 이용해서 전기세를 납부하는 것이 올해부터 반영됐기 때문입니다. 향후에 카카오페이의 간편결제로 더 다양한 공과금..
자기강화와 GAN: 부족한 정답세트를 극복하는 방법 데이터 마이닝이나 머신러닝, 인공지능 AI 등에 관한 심도깊은 얘기는 다루지 않는다. 내가 그런 심도깊은 일을 하고 있지 않기 때문이기도 하거니와 그런 내용은 학교에서 정식으로 배우거나 많은 연구 논문을 읽으면서 터득해야할 영역이다. 개인적인 요청이 있다면 그걸 위해서 가이드해줄 수는 있지만 이 티스토리에서 그걸 해결해줄 수는 없다. 하지만 2017년에는 공부 좀 하기로 마음을 먹었으니 필요하면 특별한 주제에 맞춰서 또는 머신러닝 알고리즘의 전반적인 것에 대해서 종종 다루려 한다. 계획이 그렇다는 것이지 몇 번을 다룰지는... 최근이라 적고 작년 2016년에 가장 큰 이슈가 됐던 강화학습과 GAN (Generative Adversarial Networks)에 대한 소개 또는 개념적 이해를 돕기 위해서 글..
[Q&A] 빅데이터 전공과 전망 블로그 방명록을 통해서 또 질문이 들어왔습니다. 개별적으로 답변할 수도 있지만 비슷한 고민/의문을 가진 분들을 위해서 공개적으로 글을 적습니다. 질문을 요약하면 아래와 같습니다. 1. 빅데이터 분야로 진출하기 위해서 인문학부생으로서 컴퓨터공학과와 통계학(수학) 중에서 어느 쪽으로 전과/복수전공하면 좋을까요? 2. '빅데이터'에 대한 부정적 시각도 많은데 관련된 미래 직업/산업에 대해서 어떻게 전망하시나요? 한줄 답변컴퓨터 공학과표지가 바뀐 고전인지 세련된 표지의 잡지인지는 책자을 열어봐야 안다. 그리고 고전도 시대정신을 따른다. 개인이 처한 모든 상황과 배경을 모르기 때문에 원하는 답변이 아닐 수도 있고, 또 여러 생각으로 길게 적다보니 중언부언할 수 밖에 없음을 양해바랍니다. 철저한 계획이 아닌 어쩌다..